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Abstract. In 21st century economically feasible and less expensive ways of space exploration and 

industrialization become the great challenge for mankind. One of the promising approaches is development of 

modern SSTO (single-stage-to-orbit) and VTOL (vertical-take-off-landing) technologies, leveraging latest 

achievements in new materials and propulsion systems. The paper presents results of simulation of dynamic 

systems, moving in central gravitational field, in an environment, where atmospheric drag force has a serious 

impact on system’s dynamics. Model, proposed in paper, has been analyzed and build, based on Pontrjagin’s 

principle of optimality. Optimal regular and singular thrust control of engine is analyzed. Research has been 

conducted on relations between optimal control feasibility and SSTO parameters, including initial acceleration 

and average (along trajectory) drag coefficient. Impact of  drag dependence on Mach number on accuracy of 

computed optimal trajectory has been considered. One approach to solve the problem has been developed, where 

impact of proposed optimal control implementation on problem’s optimality criteria is evaluated. The derived 

formula for calculating optimal control is invariant to conditions on right end of ascent trajectory.                                                                                                           

         

 

 

INTRODUCTION 

The classical Goddard problem – vertical launching to a 

maximum altitude [6] was the first case, when possibility of 

singular arcs – parts of active trajectory, when thrust is not 

maximal, has been considered. Physical reasons of optimal thrust 

not to be maximal, related to atmospheric drag force. During 

launch phase at some combination of velocity and altitude, drag 

force grows so high, that most of engine energy wasted on 

overcoming the drag force. Therefore it is important to find and 

build computational model to develop efficient launch 

trajectories, taking into consideration possibilty of singulac arcs. 

Particularly, we interested in problem of launching given payload 

on given orbit with maximum horizontal velocity and the end of 

launch phase. We consider flat trajectories in central newtonian 

gravitational field. Thrust vector is parallel to velocity vector, so 

we have one dimensional drag force. Control function is engine 

thrust. 

                                                           
* Corresponding author: Rozamgul Niyazova 

E-mail: rozamgul@list.ru> 

Formal statement of the problem 

Equations of motion are given as follows: 

 

     𝑟  = v;   𝑣  =  (P(q)eδ +F(r,v))/m + R(r);    𝑚 = −𝑞; (1.1) 

 

Here r – radius vector of mass center of the launching vehicle, v –

vector of velocity, m – mass of the vehicle, P(q) – engine thrust 

value, q – fuel mass consumption per time, e- unit vector of thrust 

direction, F(r,v)- drag force, and R(r)- gravitational force. For our 

convenience we introduce phase vector: 

x = {r,v,m}       

 (1.2) 

having  dimensionality n 

then the system 1.1 can be generally expressed as system of type: 

𝑥 = 𝑓0(𝑥) 
  +  δ 𝑓1(𝑥)    

 (1.3) 
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Here δ is control function, constrained by δ ∊[0,1]. Let’s denote 

initial state of system 1.3 as 𝑥0, 

and final state as 𝑥1. Problem now is stated as to find optimal 

control function δ(t) for system 1.3 moving from initial state 𝑥0 to 

final state 𝑥1 and providing maximum/minimum value to function 

φ(𝑥1) (Mayer problem).  

 

Problem Analysis 

One of the well known approaches to this class of optimization 

problems is Pontrjagin’s maximum principle.  Hamiltonian for 

system 1.3 will be linear function of control δ: 

H= 𝐻0 𝑥, 𝜓 + 𝛿𝐻1(𝑥, 𝜓) ,    (1.4) 

where 𝜓 is conjugate vector. Giving that 𝛿, according to 

maximum principle, should provide maximum to Hamiltonian 1.4 

over optimal trajectory of system 1.3,  one finds the following 

expressions: 

 

  𝛿 =  
1, 𝑖𝑓 𝐻1 > 0

0, 𝑖𝑓 𝐻1 < 0
      

 (1.5) 

  

In case when 𝐻1=0 𝛿 is undefined (singular case), part of 

trajectory, along which 𝐻1 = 0, named singular arc. It is known, 

that along singular arc system 1.3 and conjugate system: 

 

  𝜓 =  −
𝜕𝐻

𝜕𝑥
    

 (1.6) 

 

have 2k+1 first integrals ( k – named singularity level): 

 

𝐻1 = 0, 𝐻 
1 = 0, 𝐻 

1 = 0, … , 𝐻1
(2𝑘−1)

= 0, 𝐻 = 0 

 (1.7) 

 

The last equality is valid only for problems with free final time. 

Left parts of integrals 1.7 are linear and  homogeneous in regard 

to conjugate variables 𝜓. If 2k+1=n, then system 1.7 represents 

equation for surface of singular control and method, proposed in 

[3] could be used for computation of optimal trajectories.  

When 2k+1<n, the method in [3] should be modified. In this case 

system 1.7 is to be resolved for 2k conjugate variables and task of 

finding of remaining initial values of conjugate variables 𝜓𝑖(0)of 

boundary value problem could be reduced to problem of finding 

the beginning of singular arc x(t) and corresponding values of 

conjugate variables. This approach makes sense when there is 

sufficient information about control function at the beginning of 

launch trajectory. 

 

Computational Algorithm 

In particular case of our problem dimensionality n = 4. When k 

=1, one can express all conjugate variables as functions of one of 

them, for instance, 𝜓1: 

 

𝜓2 = 𝜑2 𝑥 𝜓1;    𝜓3 = 𝜑3 𝑥 𝜓1;   𝜓4 = 𝜑4 𝑥 𝜓1;   (1.8) 

 

Index 1 should be assigned to one of conjugate variables, which is 

not equal 0 along the singular arc. Otherwise, relations 1.8 would 

make conjugate vector be 0, which contradicts to maximum 

principle.  Equation for optimal control δ= δ0 𝑡 , having 1.8, 

becomes: 

 

𝐻 
1 =  𝜓1 𝐴 𝑥 𝛿0 − 𝐵 𝑥  =  0    (1.9) 

So, 𝛿0 depends only on x, no conjugate variables involved: 

 

𝛿0 =  
𝐵(𝑥)

𝐴(𝑥)
       

 (1.10) 

 

It is reasonable to assume, that trajectory starts with 𝛿 = 1 

(maximum thrust), followed by, possibly, singular arc. This 

assumption allows one to build the following procedure for 

computation of optimal trajectory. Initially, equations of motion 

1.3 are integrated with δ=1 until complete fuel consumption and 

then computed trajectory has to be looked up to find interval J, 

where it is possible to start singular arc: 

 

J = { 𝑡1: 𝛿0 𝑡1 𝜖 0,1 , 𝐴(𝑥 𝑡1 ) > 0 }  (1.11) 

 

Inequality in 1.11 follows from Kelly necessary optimality 

condition in singular case [2]. Every point 𝑡1 ∊ J generated  a 

corresponding set 𝑁𝑡1
 of possible ends of singular arc: 

 

𝑁𝑡1
= { 𝑡2: 𝛿0 𝑡2 𝜖 0,1 , 𝐴 𝑥 𝑡2  > 0, 𝑚 𝑡2 ≥ 𝑚1  }           

(1.12) 

 

Here m(t) and 𝑚1  are current and final mass of the launch 

vehicle, x 𝑡2  computed by integrating system 1.3 with δ=1 while 

𝑡 ∊ (0, 𝑡1) and δ=𝛿0 𝑡  for t∊ [𝑡1 , 𝑡2]. At moment 𝑡2 control δ  

gets one of the boundary values: 0 or 1. When 𝑡 > 𝑡2 system 1.3 

is integrated jointly with 1.6. Initial values for the latter are 

defined by formulae 1.8 when = 𝑥(𝑡2) , where constant 𝜓1(𝑡2) 

could be chosen equal to 1, because all equations involved in 

maximum principle are homogeneous. At this part of trajectory 

control is computed according to 1.5.  

Above described computational schema completely defines 

trajectory by appropriate choice of parameters 𝑡1 ∊ J, 𝑡2 ∊ 𝑁𝑡1
and 

 δ(𝑡2 + 0). The choice should satisfy to given boundary 

conditions and transversality conditions, that is, these parameters 
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should minimize discrepancies between given boundary values 

and computed trajectory at end point.  

Once the boundary conditions on the right end of trajectory have 

been satisfied, first part of launch trajectory,  preceding to 

singular arc, has to be computed. Equations of motion 1.3 and 

conjugate system are integrated backward from point 𝑥 𝑡1 ,

𝜓 𝑡1  to start point. 

 

Numerical Computations 

Parameters for numerical estimates have been chosen, based on 

specifications of Space Launch System, being developed by 

NASA. Equations of motion 1.1, written in flat polar coordinate 

system, become like these: 

 

     𝑟 = 𝑣 sin 𝜃 ;     

 

     𝑣 =   
𝑎0 1−𝑝ℎ  𝑟  𝛿−𝐹(𝑟,𝑣)

𝑚
 –

𝑠𝑖𝑛⁡(𝜃 )

𝑟2  ;                  (1.13) 

 

     𝜃 = (𝑣 −
1

𝑟𝑣
)  

𝑐𝑜𝑠 (𝜃)

𝑟
;   

 

 𝑚 =  −𝑎0𝑐𝛿;  

 

Here r is a distance between center of mass of vehicle and center 

of gravity (Earth), v – vehicle velocity, 𝜃 − angle between vector 

of velocity and local horizon, 𝛿 – control,  𝑎0- initial thrust to 

weight ratio, 𝑝ℎ 𝑟  – atmospheric counter pressure on engine 

nuzzle, 𝐹(𝑟, 𝑣) – atmospheric drag force.  Initial conditions have 

been picked up, assuming that trajectory starts with vertical 

takeoff with maximum thrust, so the computation starts at 

moment of time, when  𝜃0 <
𝜋

2
  and 𝑣0 > 0 

Series of computational experiments with slight variations of 

initial values 𝑣0, 𝜃0 have shown, indeed, that singular arcs are 

possible. Figure 1 shows diagram of control function behavior. 

What is interesting, that singular arc visibly occupies most part of 

active trajectory (where ≥ 0 ). 

 

 

Figure 1. 

 

Figure 2. Depicts time diagrams of main coordinates of 

trajectory. 

 

 

 

Figure 3. Diagram of vehicle mass over time. 

Summary 

The purpose of this work was to present a feasible technique for 

computation of optimal trajectories, including singular arcs. 

Computational experiments have proved that such singular arcs 

can exist. Further development aims at finding, how effective 

might be singular arcs, depending on vehicle structural 

parameters or engine capabilities.  
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